\(\int (a+b \tan ^2(e+f x))^{3/2} \, dx\) [315]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 125 \[ \int \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\frac {(a-b)^{3/2} \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {(3 a-2 b) \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f} \]

[Out]

(a-b)^(3/2)*arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/f+1/2*(3*a-2*b)*arctanh(b^(1/2)*tan(f*x+e)
/(a+b*tan(f*x+e)^2)^(1/2))*b^(1/2)/f+1/2*b*(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/f

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.438, Rules used = {3742, 427, 537, 223, 212, 385, 209} \[ \int \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\frac {(a-b)^{3/2} \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {\sqrt {b} (3 a-2 b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f} \]

[In]

Int[(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

((a - b)^(3/2)*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/f + ((3*a - 2*b)*Sqrt[b]*ArcTanh
[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/(2*f) + (b*Tan[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/(2*f)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 427

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[d*x*(a + b*x^n)^(p + 1)*((c
 + d*x^n)^(q - 1)/(b*(n*(p + q) + 1))), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 3742

Int[((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x]
, x]}, Dist[c*(ff/f), Subst[Int[(a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ
[{a, b, c, e, f, n, p}, x] && (IntegersQ[n, p] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\left (a+b x^2\right )^{3/2}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}+\frac {\text {Subst}\left (\int \frac {a (2 a-b)+(3 a-2 b) b x^2}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f} \\ & = \frac {b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}+\frac {(a-b)^2 \text {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}+\frac {((3 a-2 b) b) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f} \\ & = \frac {b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}+\frac {(a-b)^2 \text {Subst}\left (\int \frac {1}{1-(-a+b) x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {((3 a-2 b) b) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f} \\ & = \frac {(a-b)^{3/2} \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {(3 a-2 b) \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.14 \[ \int \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\frac {-2 (a-b)^{3/2} \arctan \left (\frac {\sqrt {b}+\sqrt {b} \tan ^2(e+f x)-\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )+\sqrt {b} (-3 a+2 b) \log \left (-\sqrt {b} \tan (e+f x)+\sqrt {a+b \tan ^2(e+f x)}\right )+b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f} \]

[In]

Integrate[(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(-2*(a - b)^(3/2)*ArcTan[(Sqrt[b] + Sqrt[b]*Tan[e + f*x]^2 - Tan[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/Sqrt[a -
 b]] + Sqrt[b]*(-3*a + 2*b)*Log[-(Sqrt[b]*Tan[e + f*x]) + Sqrt[a + b*Tan[e + f*x]^2]] + b*Tan[e + f*x]*Sqrt[a
+ b*Tan[e + f*x]^2])/(2*f)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(296\) vs. \(2(107)=214\).

Time = 0.07 (sec) , antiderivative size = 297, normalized size of antiderivative = 2.38

method result size
derivativedivides \(-\frac {b^{\frac {3}{2}} \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{f}+\frac {b \sqrt {a +b \tan \left (f x +e \right )^{2}}\, \tan \left (f x +e \right )}{2 f}+\frac {3 \sqrt {b}\, a \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{2 f}+\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f \left (a -b \right )}-\frac {2 a \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f b \left (a -b \right )}+\frac {a^{2} \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f \,b^{2} \left (a -b \right )}\) \(297\)
default \(-\frac {b^{\frac {3}{2}} \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{f}+\frac {b \sqrt {a +b \tan \left (f x +e \right )^{2}}\, \tan \left (f x +e \right )}{2 f}+\frac {3 \sqrt {b}\, a \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{2 f}+\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f \left (a -b \right )}-\frac {2 a \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f b \left (a -b \right )}+\frac {a^{2} \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{f \,b^{2} \left (a -b \right )}\) \(297\)

[In]

int((a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*b^(3/2)*ln(b^(1/2)*tan(f*x+e)+(a+b*tan(f*x+e)^2)^(1/2))+1/2*b*(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/f+3/2/f
*b^(1/2)*a*ln(b^(1/2)*tan(f*x+e)+(a+b*tan(f*x+e)^2)^(1/2))+1/f*(b^4*(a-b))^(1/2)/(a-b)*arctan(b^2*(a-b)/(b^4*(
a-b))^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))-2/f*a/b*(b^4*(a-b))^(1/2)/(a-b)*arctan(b^2*(a-b)/(b^4*(a-b))^
(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))+1/f*a^2*(b^4*(a-b))^(1/2)/b^2/(a-b)*arctan(b^2*(a-b)/(b^4*(a-b))^(1
/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))

Fricas [A] (verification not implemented)

none

Time = 0.53 (sec) , antiderivative size = 537, normalized size of antiderivative = 4.30 \[ \int \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\left [-\frac {{\left (3 \, a - 2 \, b\right )} \sqrt {b} \log \left (2 \, b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right ) + 2 \, {\left (a - b\right )} \sqrt {-a + b} \log \left (-\frac {{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b} \tan \left (f x + e\right ) - a}{\tan \left (f x + e\right )^{2} + 1}\right ) - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} b \tan \left (f x + e\right )}{4 \, f}, -\frac {{\left (3 \, a - 2 \, b\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-b}}{b \tan \left (f x + e\right )}\right ) - {\left (-a + b\right )}^{\frac {3}{2}} \log \left (-\frac {{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b} \tan \left (f x + e\right ) - a}{\tan \left (f x + e\right )^{2} + 1}\right ) - \sqrt {b \tan \left (f x + e\right )^{2} + a} b \tan \left (f x + e\right )}{2 \, f}, \frac {4 \, {\left (a - b\right )}^{\frac {3}{2}} \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {a - b} \tan \left (f x + e\right )}\right ) - {\left (3 \, a - 2 \, b\right )} \sqrt {b} \log \left (2 \, b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right ) + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} b \tan \left (f x + e\right )}{4 \, f}, \frac {2 \, {\left (a - b\right )}^{\frac {3}{2}} \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {a - b} \tan \left (f x + e\right )}\right ) - {\left (3 \, a - 2 \, b\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-b}}{b \tan \left (f x + e\right )}\right ) + \sqrt {b \tan \left (f x + e\right )^{2} + a} b \tan \left (f x + e\right )}{2 \, f}\right ] \]

[In]

integrate((a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*((3*a - 2*b)*sqrt(b)*log(2*b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x + e) + a) + 2
*(a - b)*sqrt(-a + b)*log(-((a - 2*b)*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x + e)
- a)/(tan(f*x + e)^2 + 1)) - 2*sqrt(b*tan(f*x + e)^2 + a)*b*tan(f*x + e))/f, -1/2*((3*a - 2*b)*sqrt(-b)*arctan
(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x + e))) - (-a + b)^(3/2)*log(-((a - 2*b)*tan(f*x + e)^2 - 2*sqr
t(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x + e) - a)/(tan(f*x + e)^2 + 1)) - sqrt(b*tan(f*x + e)^2 + a)*b*ta
n(f*x + e))/f, 1/4*(4*(a - b)^(3/2)*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x + e))) - (3*a - 2*
b)*sqrt(b)*log(2*b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x + e) + a) + 2*sqrt(b*tan(f*x
+ e)^2 + a)*b*tan(f*x + e))/f, 1/2*(2*(a - b)^(3/2)*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x +
e))) - (3*a - 2*b)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x + e))) + sqrt(b*tan(f*x + e)
^2 + a)*b*tan(f*x + e))/f]

Sympy [F]

\[ \int \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int \left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}\, dx \]

[In]

integrate((a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Integral((a + b*tan(e + f*x)**2)**(3/2), x)

Maxima [F]

\[ \int \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \,d x } \]

[In]

integrate((a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2), x)

Giac [F(-1)]

Timed out. \[ \int \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\text {Timed out} \]

[In]

integrate((a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int {\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \]

[In]

int((a + b*tan(e + f*x)^2)^(3/2),x)

[Out]

int((a + b*tan(e + f*x)^2)^(3/2), x)